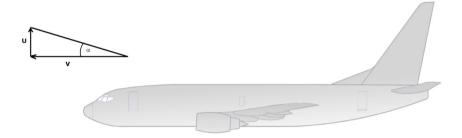
Sehr geehrter Kunde,


Ein fehlerfreier Inhalt unserer Lehrbücher liegt uns am Herzen. Bitte fügen Sie dieses Blatt als Korrektur dem Band bei. Folgende Fehler sind bekannt.

Errata zum Band 081 Grundlagen des Fluges

Korrekturen ab Version 1.18.07.2012_K2_18.08.2015

S.109	Die Berechnung und das Ergebnis ist falsch
	Korrektur wie folgt

Berechnung des Böenlastvielfachen bei einer vertikalen Böe im Horizontalflug

Trifft ein Flugzeug im Horizontalflug mit der wahren Geschwindigkeit V auf eine vertikale Böe der Geschwindigkeit U, so resultiert daraus eine plötzliche Änderung des Anstellwinkels α . Es gilt für kleine Winkel α :

$$\delta\alpha\!=\!arctan\frac{U}{V}\!\sim\frac{U}{V}$$

Aus der Änderung des Anstellwinkels wiederum erfolgt eine Änderung des Auftriebs L um δL , der sich wie folgt berechnen lässt. $C_{L\alpha}$ ist dabei der Steigungskoeffizient der Auftriebsfunktion $C_L(\alpha)$.

$$\delta L = \frac{1}{2} \rho V^2 S(C_{L_{\alpha}} \delta \alpha) \simeq \frac{1}{2} \rho V SC_{L_{\alpha}} U$$

Aufgrund der Definition von n als Quotient von L und W ergibt sich das <u>Delta des Lastvielfachen n</u> aufgrund einer Böe zu:

$$\delta n = \frac{\delta L}{W} = \frac{\rho UVC_{L_{\alpha}}}{2(W/S)}$$

Das gesamte Böenlastvielfache im Flugzeug beträgt $1+\delta n$, da im Horizontalflug n=1 ist.

Beispiel: (Aufgabe zum Böenlastvielfachen)

Ein Flugzeug fliegt horizontal (L=W) mit $2*V_s$. Durch eine vertikale Böe erhöht sich das Lastvielfache auf n=2. Wie groß wäre bei derselben vertikalen Böe und ebenfalls im Horizontalflug das Lastvielfache n bei $1,3*V_s$?

Lösung:

Man wendet die obige Formel für beide Geschwindigkeiten an und teilt die beiden Formeln durcheinander. Als Resultat ergibt sich eine relativ einfache Verhältnisgleichung:

 $\delta n_1/\delta n_2 = V_1/V_2 = 1,3V_S/2V_S = 0,65$

Weil das Lastvielfache n_2 bei der höheren Geschwindigkeit 2*Vs gleich 2 ist, folgt δn_2 =2-1=1.

Daraus folgt δ n₁=0,65 und somit beträgt das Gesamtlastvielfache bei der geringeren Geschwindigkeit n₁=1+0,65 = 1,65.

K.L.S. Publishing, mailto:info@klspublishing.de